
be used for determining the accuracy of approximate solutions and computational algo- 
rithms. 
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The separation of a system of three elasticity theory equations in the static case 

to a system of two equations and one independent equation for a space with a 
radial inhomogeneity is presented in a spherical coordinate system. These equa- 

tions are solved by separation of variables for specific kinds of radial inhomoge- 

neity. In particular, solutions are found for the Lamd coefficients p = con& h (r) 

is an arbitrary function, p = pLo?, h = $,rP. 
While methods of solving problems associated with the equilibrium of an elas- 

tic homogeneous sphere have been studied sufficiently [l]. problems with spheri- 

cal symmetry of the boundary conditions have mainly been solved for an inho- 
mogeneous sphere 12. 3 J. 

For a particular kind of inhomogenei~ dependent on one Cartesian coordinate, 

the equations have been separated completely in [4]. A system of three equations 
with a radial inhomogeneity in a spherical coordinate system is separated below 
by a method analogous to [4] . 

1, The equilibrium equations in displacements with a radial inhomogeneity and no 
mass forces are 

(hf21~)~raddivu--rotr.ot.u$i,)i’divu_t~~ i,xrotu+2$-) =O (1.1) 
( 

Here 1, (r) and P (7) are the Lame’ coefficients dependent on the radius, ci, is the unit 
vector in the radial direction, and u is the displacement vector. Let us write (1.1) in 
matrix form in spherical coordinates 

j/ aiii i/cd (u,, UO’ XJ = 0 0.2) 
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Here 

De% = r& $ (sin 6 au), D’v = $ T& (r%) 

We introduce the following substitution (the sum of the curl and the gradient on a sphe- 
rical surface) : 

1 aiV aF a‘v 1 aF 
u zT-----f~, ___- 
6 SlIl 0 acp % = - aA + sin 8 acp 

The matrix equation consequently becomes 

rDeQl + rD,Qz q = 0. rD,Q1 - rDoQ2 = 0 

(1.3) 

(1.4) 

Qs=[pA+p’($---&)~~Ny A,=r2[D8“DofDq2] 

where A* is the Beltrami operator [Sj. 

The following, easily-confirmable, relationships were used in deriving the equations: 

rD, - 2f~ ctg 0D,s -= rD&A 

P ‘- f-*s:n*tj ( rlj, -+ 2p ctg CID92 = rD,pA 

One of the equations of the system (1.4) is satisfied identically if we define 

(1.5) 

Then the other equation of this system yields an equation for U) 

A*71! = 0 (1.6) 
Let us now consider the solution of the system (1.3). (1.5) and (1.6) instead of the so- 

lution of the system (1.3), (1.4). 
We will show that the function can be considered zero without limiting the generality. 

We denote by uro, F", N" the solution of the homogeneous equations, and by uT+, F+, N+ 
the solution of the inhomogeneous equations. Let us take the following as a particular 

solution of the inhomogeneous equations (~1 is the solution of (1.6)) : 
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f 

I&+ = 0, F+ = - -$ ” zu1 (cp, t), rl) K (rl, r) drl 
I 
a 

P 

N+ = sin 6 & ’ w1 (cp, 8, rl) K (rl, r) &I 
I 
a 

(1. v 

YI (n) y2 (r) - ~2 64 Y1 (r) 
K (rl, r) = - 

YI (rl) YZ’ (rl) -- yz (n) yl’ (rl) 

Here yl, y, are linearly independent solutions of the homogeneous equation 

[ 
D++P (S-f 11 

y=o 

In order to verify that F+ and N+ are particular solutions of the inhomogeneous 

equation (1.5), it is necessary to consider A.,F+ = 0, A,N+ = 0. Therefore, the solution 
has the form 

21,=uy0, u, = -&-$(N++w)+$-(F++P) =$&j-s a t=F” 

u,=--(~++N”)+,~~(F++F”)=--N”+~~ F” 

The system of three equations (1.3), (1.4) has therefore been reduced to a system of 
two equations consisting of (1.3) and the equation Q1 = 0 and an individual equation 

Qz = 0. In the presence of mass forces with potentials, appropriate terms describing the 
separation of vectors under consideration will appear in the right sides of the equations. 

2. Let us consider application of the method of separation of variables to the equa- 
tion Q2 = 0 describing the shear strain. It is natural to seek the solution as 

A\’ = x:f, (r) Yn (6, 9) 

where (Y (6, cp) is a spherical function. Using a property of spherical functions [l], we 
obtain a second order equation for fl, (7) 

f,” (r) + f,’ (r) (+ + + ) - f, (4 r” “,2’) ’ f $1 = O (2.1) 

Of special interest are solutions of (2.1) which are expressed in terms of known functions, 
For this we substitute 

f,, Cr) = f* / (r 1/F) 
and reduce (2.1) to normal form [6] 

--((n+f)n 
f*#+{ r2 

_f+-#L)2-~}f*=o (2.2) 

According to [6]. the solution of (2.2) is related to the solution of the equation 

&l+P(“)n=o 

where n = n (z), the dependence f* (7) = 11 (5) / l/Tr, where x = x (r) if the follow- 
ing relationship is satisfied 

-& &{2+, r} -t_ (q.‘)2 P (I) =- (n ++I’ ’ _” + $ (2.3) 
2P ( > 

$- ’ _ Z$ = 

(n+ i)n---2 - 
r2 DI&‘, 
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here (D, {G’ , d is the Schwartz derivative [6]. Using the easily verifiable property of 
the Schwartz derivative 

a {Wt't r} = DI {q’, r} + D1 {WX’, z) (zr’)z (2.4) 

where W = W [z (r)], the following identity can be written 

DI (2.5) 

(In the notation under consideration W; = 1 / (p T*).) Taking account of the identity 
(2.5), we reduce the relationship (2.3) to two equations 

(n + 1) n - 2 - 
r2 (rs’)2 = PI (z), fDl{+$, x}-&(z) (2.6) 

(P* (4 + P2 (4 = p (4) 
We write the last eqitation.in (2.6) explicitly by using the following definition of the 
Schwartz derivative 

[$ + Pp@)] r$j’” = 0 (2.7) 

Using the normal form of the Helmholtz, Bessel and Whittaker equations, i. e. giving the 
function P (5) and partitioning it into the parts p1 (5) and P, (5) convenient for 

calculations, we find the function p (r) from the fist equation of (2.6) and (2.7), for 

which the solutions of (2.2) are expressed in terms of the solutions of the corresponding 
equation. 

Let us examine specific examples. 

( 1) . The solutions are expressed in terms of the Helmholtz equations. In this case 

P (z) = - 9. We hence assume P, (x) = - ~2, p2 (5) =-~22 so that -~12 - ~~3 = ---G. 

From (2.6) we obtain two relations 

- (n + 1) n + 2 = - s12, r,’ = 7 

The last reladon determines T as a function of x, P = cex, where c is the constant of 

integration. Substituting P, (r) = - s2 into (2.7) and solving it with respect to r4 p /TZ’, 

we obtain 

or respectively 
p = (AlrTsP + AgS2)z /r3 

We find for the function f. 

f* = j,r/r@.- f~/(n+l)n--2tsz~ + ~2r1T(n+l)n-2+sZ) 

In this case the function f,, (7) is 

fn (4 = (.&-S2:k ‘,@) CBl r -I/(TL+l)n-2+sz" + ~zrf(rL+l)n-2+sr~) 

For A, = 0, s2 = 3/Z , the solutions go over into known solutions corresponding to a 

homogeneous space. 
( 2). Solutions expressed in terms of solutions of the Bessel equation. In this case, 

we obtain from the first equation of (2.6) and (2.7) for P,, (x) = (1 - 4~2) / (4$), 

P, (5) = 9, where Y is the order of the Bessel function 

7. = z, 2, = + l/n% -i+ n - 714, p = {Ae -isr _i_ &y)2/ + 

For an appropriate p (z) we find for the function fg from (2.3) 
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f* (r) = IW, (4 + hJ_, (sr)l T/r 
If we assume 

2-4+ 
PI (2) =: s2, Pz (4 = 422 

we obtain from the first equation of (2.6) and (2.7) (s2 = 2 - (n + i) n and In r = 3 

( CIX ‘,‘d k 

I 

+c~z”~-~ (k=IvI), G>O 
(p3)1” = 

Cl 1/G-+ c2 T/i? In 2, Y2 = 0 

~1 T/~cos(klnr)+cz fFsin(klnr), v2<0 

The functions f+ (r) and fn (r) are expressed in terms of Bessel functions in conformity 
with the examples presented. 

AQ analysis of solutions expressed in terms of the hypergeometric function is carried 

out analogously. 

3. To solve the system consisting of the two equations: Q1 = 0 and (1.3), let us use 
separation of variables. Let us seek the solution in the form uT r zu,y,, (Q, cp), F = 

Z F, Y, (0, cp). We consequently obtain a system of ordinary differential equations (3.1) 
which we write in matrix form 

(3.1) 

51(n r G= -( - 2 + - 5’ 5 i-l)n 5r 

51 _ 
W 

($+%) 

a_l 
I(n + 1) W 2h’ 

r25 -7 - 

(n + 1) n(L + IL) + (n + 1) A. 

H,= 
r25 5r 

25 CL’ - 
p + jTr 

L(n+fk& 
r2p 1 P’ 

where E is the unit matrix. 

Let us examine the simplest cases of solving the system (3.1). 
( 1). Inhomogeneous space with A = 1, /, lo = p,,?. Substituting A and p in the 

matrices G and H, we obtain that the matrix of the coefficients is inversely proportion- 

al to r, and H - 1 / r2. Consequently, the system is a matrix equation of Euler type, and 

its solutions are sought as u, = u*P, P, = F,P, where u* and P, are constants, and m 

are the roots of the fourth order characteristic equation obtained as a result of substituting 
the solutions into (3.1). 

In particular, for B = 0 we obtain known values of m corresponding to solutions for a 

homogeneous space. 

( 2 ). Let us consider the case when one of the solutions of (1.1) is u = grad x. 
In the notation of the system (3, l), we obtain U, = 8% I dr, F, = x / r. Substituting these 
expressions into (3. l), we obtain two equations in x; the condition for identity of these 
equations is governed by the law of inhomogeneity of the media for which one of the so- 
lutions has the form mentioned. The identity condition is (two cases) 

a) when 
<= 2 (v’j2 r 

p”r - p’ 
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b) when lt = const and J. is an arbitrary function. When p = const, we represent 
(3.1) with respect to the variables un and x = F, r as 

(3.3) 

A solution of (3.3) is Yb, Yb i Wb-lY’,dr, where Yb and Y, are matrices of the fun- 
damental solutions of the equations 

(3.4) 

h’ P (n f I) 72 _- _ 5 cr2 
-2 (n-I-1)n 

A= 9 

5 _- P 0 0 

Solutions of the system (3.4) are 

- 5 (n + 1) nrn @.-m+o 
Ya = CL p I Y, == 1 n p-1 - (n + 1) r-(n+2) 

p+1 r- I rn r-(wi) I 
When the relationship (3.2) is satisfied, the representation of (3.1) in the form (3.3) 
yields II _ ~, 

- p (n + 1) n 211’ (II + l)n- 1 p” 

5 iy - Ty- 
.i. - - 

r2 
A= 

y-b’ 3 
, B= 

p’r 

1 0 
P P 

The solutions of equations (3.4) for the matrices A and B under the condition (3.2) 

have not been given successfully in closed form, as it was done for p = const. Only in 
particular cases can the solutions be expressed in terms of known solutions of second- 

order equations. 
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