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be used for determining the accuracy of approximate solutions and computational algo-
rithms,
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The separation of a system of three elasticity theory equations in the static case
to a system of two equations and one independent equation for a space with a
radial inhomogeneity is presented in a spherical coordinate system, These equa-
tions are solved by separation of variables for specific kinds of radial inhomoge -
neity, In particular, solutions are found for the Lamé coefficients p. = const, A ()
is an arbitrary function, u = por®, A = 2P

While methods of solving problems associated with the equilibrium of an elas-
tic homogeneous sphere have been studied sufficiently [1], problems with spheri-
cal symmetry of the boundary conditions have mainly been solved for an inho-
mogeneous sphere [2, 3],

For a particular kind of inhomogeneity dependent on one Cartesian coordinate,
the equations have been separated completely in [4], A system of three equations
with a radial inhomogeneity in a spherical coordinate system is separated below
by a method analogous to {4].

1, The equilibrium equations in displacements with a radial inhomogeneity and no
mass forces are

(A -+ 2n) grad divu — p rot rot u - ipA’ divu L p (i, xrotu+2%) =0 (1L1)

Here A ({(r) and p (») are the Lamé coefficients dependent on the radius, ‘i, is the unit
vector in the radial direction, and u is the displacement vector, Let us write (1,1)in
matrix form in spherical coordinates

I a, l} col ({lr, uy, u,@) =10 (1.2)
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We introduce the following substitution (the sum of the curl and the gradient on a sphe-
rical surface):

1 aN _6_{ ﬁi\_’ 1 oF
Y= Tinp g T Y= 38 " S0 op
The matrix equation consequently becomes
a 1 2 A
alluT+C157(TA*F)_‘,_P:A*F'F—’,‘A*F:O (1,3)
rDyQi+rDyQa==0.  rD_Qi—rDyQs=0 (1.4)

=[R2 B e (=t e

d 1\
G =[pa+w (G =) ¥ A=rDeDy D

where A* is the Beltrami operator [5].
The following, easily -confirmable, relationships were used in deriving the equations:

1

v (A T r2sin20 ) rDy—2petg 0D 2 =rDgnA
1

® (A - m) rD, - 2p ctg 0D = rD pA

One of the equations of the system (1,4) is satisfied identically if we define

dw dw
—_ - — qf -— 1. 5
Q1 e Q2 =sin 0 =5 1. 5)
Then the other equation of this system yields an equation for w
Ayw =0 (1, 6)

Let us now consider the solution of the system (1, 3),(1.5) and (1, 6) instead of the so-
lution of the system (1, 3), (1.4),

We will show that the function can be considered zero without limiting the generality,
We denote by u,°, F°, N° the solution of the homogeneous equations, and by u,*, F*, N*
the solution of the inhomogeneous equations, Let us take the following as a particular
solution of the inhomogeneous equations (w; is the solution of (1,6)):
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Here ¥, ¥, are linearly independent solutions of the homogeneous equation

., o 1
(2 g e (g =) v =0
In order to verify that F+ and N* are particular solutions of the inhomogeneous

equation (1, 5), it is necessary to consider A F+= 0, A,N+ = 0. Therefore, the solution
has the form

. 1 ) 1 N 9

‘“‘"Z“r’"e= e a<p (N++N)+ae (F+F)=gve a9 T 7
2 )

Yo =T 9(N++N)+ 51119 XS (Fr+F) =— 6N°+ sin® og £

The system of three equations (1, 3), (1,4) has therefore been reduced to a system of
two equations consisting of (1, 3) and the equation Q, = 0 and an individual equation
Q, = 0. In the presence of mass forces with potentials, appropriate terms describing the
separation of vectors under consideration will appear in the right sides of the equations,

2, Let us consider application of the method of separation of variables to the equa-
tion Q, = 0 describing the shear strain, It is natural to seek the solution as
V=2 (NY, O, ¢)

where (Y (6, @) is a spherical function, Using a property of spherical functions [1], we
obtain a second order equation for f, ()

0+ 10 (B + =)ty ()[w"—+p—;]=0 2. 1)

Of special interest are solutions of (2,1) which are expressed in terms of known functions,
For this we substitute —
fn(r)=ful (r V')

and reduce (2,1) to normal form [6]

oo (Sl e W, 2.2)

According to [6], the solution of (2, 2) is related to the solution of the equation

d?2
AN+ P@n=0

where n = n(z), the dependence f, (r) =n(2)/V z',, where z ==z () if the follow-
ing relationship is satisfied

(nFt) m_ p 1(1»’)” 2 (@23
~ X

1
T Diled @ PP = gt

w
(n4+1)n—-2 1 1 d?
M‘*““‘rg_‘+TD1 {P«_"I’ r} R Dy{z,, 7}y = —2(x, "2—2(3:,.’)"



1086 A.E.Purc

here (D;{z/', 7} is the Schwartz derivative [6], Using the easily verifiable property of
the Schwartz derivative

DWWy, r} = Difay, 1}y - DL (W, z) ()2 (2.4)
where W = W [z ()], the following identity can be written
1 ry
Dy {l—"ﬁ s r} =D {:l!r', r} + Dy {T;;—al ’ x} (x)? (2, 8)

(In the notation under consideration W, = 1/ (nr%.) Taking account of the identity
(2, 5), we reduce the relationship (2. 3) to two equations
(n+1)n—2

re2

(Py (2) + Py (z) = P (2)
We write the last equation.in (2, 6) explicitly by using the following definition of the

Schwartz derivative a2 Frrpte
][]

Using the normal form of the Helmholtz, Bessel and Whittaker equations, i, e, givingthe
function P (z) and partitioning it into the parts P; (z) and P, (z) convenient for
calculations, we find the function M (v} from the first equation of (2,6) and (2, 7), for
which the solutions of (2, 2) are expressed in terms of the solutions of the corresponding
equation,
Let us examine specific examples,

(1). The solutions are expressed in terms of the Helmholtz equations, In this case
P (x) = — 5% We hence assume P; (z) = — 52, P, (z) =—s2? so that —s12 — &* = &2,
From (2, 6) we obtain two relations

—pnp2=—s2 =

The last relation determines r as a function of =z, » = ce*, where ¢ is the constant of
integration, Substituting P, (x) = — s2* into (2, 7) and solving it with respect to rtp /72,
we obtain

(rx')? = P (v), _;'Dl {%ﬁ;‘ , x} = Py (x) (2.6)

o= (AT - Ape®)2 /3

or respectivel
y W= (A~ 4- Apr®)2 3
We find for the function f,

fy = V7 (By~ Y@D-2tsd | g, 'V(m1)n—2+ss’)
In this case the function f, () is

(B, ;Y (an—2rs? -+ BzrV(n+1)n-2+s,2)

f'n (r) = '(‘41"—52 -+ {42'_52)

For 4, = 0, s, = 3/, ,the solutions go over into known solutions corresponding to a
homogeneous space,
(2). Solutions expressed in terms of solutions of the Bessel equation, In this case,
we obtain from the first equation of (2,6) and (2,7) for P, () = (1 — 4v2) / (422),
P, (x) = %, where v is the order of the Bessel function )
r=z, v=-4Vn2in—7;, w={Ae L 4e"Ty2) !

For an appropriate P (z) we find for the function /. from (2, 3)
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fu ()= [BJ, (s1) + B _, (st} V1

If we assume
1 —4v2
Py (z) = s, Py(x) = —712

we obtain from the first equation of (2,6) and (2,7) (=2 —(n 4+ 1) n and Inr = 2)

[ ™ L cgr ok (k= |v]), v2>0
(p’r3)ll’ = Cy V.’ZT‘{'—' Cy V—C_E— In x, Vi= 0
aaVacoskloz)4c Vzsin(klnz), v3<0

The functions f, () and f, (r) are expressed in terms of Bessel functions in conformity
with the examples presented,

An analysis of solutions expressed in terms of the hypergeometric function is carried
out analogously,

3, To solve the system consisting of the two equations: @, = 0 and (1, 3), let us use
separation of variables, Let us seek the solution in the form u, = Zu, ¥, (Q,9), F =
I Fy Yy (8, ¢). We consequently obtain a system of ordinary differential equations (3,1)
which we write in matrix form

B, d
e L _g ——ﬂ

L dre T Y

2 T Ln+1n
- (Tr_g—) tr
“= 3 2 W
v )
2 f(n41)ynmp 20 (p+D)rE+p) (4+1)ad
He T ey T T r2g + ir
= (2@ ,.EL) Lt Hn
T \pe2 T pr 2 Fpr

where E is the unit matrix,
Let us examine the simplest cases of solving the system (3, 1),

(1). Inhomogeneous space with » = 2, Pop = por‘a. Substituting A and p in the
matrices ¢ and H, we obtain that the matrix of the coefficients is inversely proportion-
alto r, and # ~ 1/ r%. Consequently, the system is a matrix equation of Euler type, and
its solutions are sought as u, = u,™, F, = F,»™, where u, and F, are constants,and m
are the roots of the fourth order characteristic equation obtained as a result of substituting
the solutions into (3,1),

In particular, for § = 0 we obtain known values of m corresponding to solutions for a
homogeneous space,

(2). Let us consider the case when one of the solutions of (1,1) is » = grad y.

In the notation of the system (3,1), we obtain u, = 9y / dr, F, = ¥ / r. Substituting these
expressions into (3, 1), we obtain two equations in ¥; the condition for identity of these
equations is governed by the law of inhomogeneity of the media for which one of the so-
lutions has the form mentioned, The identity condition is (two cases)

a) when 2(wyr

C: " ’
pr—p

(3.2)
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b) when p = const and A is an arbitrary function, When p = const, we represent
(3, 1) with respect to the variables u, and y, = F,, r as
un

f d " d

7 — A} ~ ] y
A solution of (3,3) is W, ¥, § ¥, '¥ydr, where ¥, and ¥, are matrices of the fun-
damental solutions of the equations

=0 (3.3)

d d i 3,4
[dr~A]‘Fa:O, LWWBJWb:o (3.4)
A’ win+1)n 2 (n-+-1)n
— e Arm R
A —= g gr , B = r r2
__pt_ 0 1 0

Solutions of the system (3, 4) are

—L(n+ )" Ear ™D
v = b z , ¥

a

ar*l — (n 4 1) 0
n r—(n+i)

b

_|
|

= I
L P

When the relationship (3, 2) is satisfied, the representation of (3,1) in the form (3, 3)
yields

N —eethe W | (i.,gi) fogp =t w"

A= Z‘;, - . v v B= IR " !Llri‘
- —b 1 0 |
B g

The solutions of equations (3,4) for the matrices 4 and B under the condition (3,2)
have not been given successfully in closed form, as it was done for u = const. Only in
particular cases can the solutions be expressed in terms of known solutions of second-
order equations,
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